Перевод: со всех языков на все языки

со всех языков на все языки

Journal of the Historical Metallurgy Society

  • 1 Coolidge, William David

    SUBJECT AREA: Electricity, Metallurgy
    [br]
    b. 23 October 1873 Hudson, Massachusetts, USA
    d. 3 February 1975 New York, USA
    [br]
    American physicist and metallurgist who invented a method of producing ductile tungsten wire for electric lamps.
    [br]
    Coolidge obtained his BS from the Massachusetts Institute of Technology (MIT) in 1896, and his PhD (physics) from the University of Leipzig in 1899. He was appointed Assistant Professor of Physics at MIT in 1904, and in 1905 he joined the staff of the General Electric Company's research laboratory at Schenectady. In 1905 Schenectady was trying to make tungsten-filament lamps to counter the competition of the tantalum-filament lamps then being produced by their German rival Siemens. The first tungsten lamps made by Just and Hanaman in Vienna in 1904 had been too fragile for general use. Coolidge and his life-long collaborator, Colin G. Fink, succeeded in 1910 by hot-working directly dense sintered tungsten compacts into wire. This success was the result of a flash of insight by Coolidge, who first perceived that fully recrystallized tungsten wire was always brittle and that only partially work-hardened wire retained a measure of ductility. This grasped, a process was developed which induced ductility into the wire by hot-working at temperatures below those required for full recrystallization, so that an elongated fibrous grain structure was progressively developed. Sintered tungsten ingots were swaged to bar at temperatures around 1,500°C and at the end of the process ductile tungsten filament wire was drawn through diamond dies around 550°C. This process allowed General Electric to dominate the world lamp market. Tungsten lamps consumed only one-third the energy of carbon lamps, and for the first time the cost of electric lighting was reduced to that of gas. Between 1911 and 1914, manufacturing licences for the General Electric patents had been granted for most of the developed work. The validity of the General Electric monopoly was bitterly contested, though in all the litigation that followed, Coolidge's fibering principle was upheld. Commercial arrangements between General Electric and European producers such as Siemens led to the name "Osram" being commonly applied to any lamp with a drawn tungsten filament. In 1910 Coolidge patented the use of thoria as a particular additive that greatly improved the high-temperature strength of tungsten filaments. From this development sprang the technique of "dispersion strengthening", still being widely used in the development of high-temperature alloys in the 1990s. In 1913 Coolidge introduced the first controllable hot-cathode X-ray tube, which had a tungsten target and operated in vacuo rather than in a gaseous atmosphere. With this equipment, medical radiography could for the first time be safely practised on a routine basis. During the First World War, Coolidge developed portable X-ray units for use in field hospitals, and between the First and Second World Wars he introduced between 1 and 2 million X-ray machines for cancer treatment and for industrial radiography. He became Director of the Schenectady laboratory in 1932, and from 1940 until 1944 he was Vice-President and Director of Research. After retirement he was retained as an X-ray consultant, and in this capacity he attended the Bikini atom bomb trials in 1946. Throughout the Second World War he was a member of the National Defence Research Committee.
    [br]
    Bibliography
    1965, "The development of ductile tungsten", Sorby Centennial Symposium on the History of Metallurgy, AIME Metallurgy Society Conference, Vol. 27, ed. Cyril Stanley Smith, Gordon and Breach, pp. 443–9.
    Further Reading
    D.J.Jones and A.Prince, 1985, "Tungsten and high density alloys", Journal of the Historical Metallurgy Society 19(1):72–84.
    ASD

    Biographical history of technology > Coolidge, William David

  • 2 Haynes, Elwood

    [br]
    b. 14 October 1857 Portland, Indiana, USA
    d. 13 April 1925 Kokomo, Indiana, USA
    [br]
    American inventor ofStellite cobalt-based alloys, early motor-car manufacturer and pioneer in stainless steels.
    [br]
    From his early years, Haynes was a practising Presbyterian and an active prohibitionist. He graduated in 1881 at Worcester, Massachusetts, and a spell of teaching in his home town was interrupted in 1884–5 while he attended the Johns Hopkins University in Baltimore. In 1886 he became permanently diverted by the discovery of natural gas in Portland. He was soon appointed Superintendent of the local gas undertaking, and then in 1890 he was hired by the Indiana Natural Gas \& Oil Company. While continuing his gas-company employment until 1901, Haynes conducted numerous metallurgical experiments. He also designed an automobile: this led to the establishment of the Haynes- Apperson Company at Kokomo as one of the earliest motor-car makers in North America. From 1905 the firm traded as the Haynes Automobile Company, and before its bankruptcy in 1924 it produced more than 50,000 cars. After 1905, Haynes found the first "Stellite" alloys of cobalt and chromium, and in 1910 he was publicizing the patented material. He then discovered the valuable hardening effect of tungsten, and in 1912 began applying the "improved" Stellite to cutting tools. Three years later, the Haynes Stellite Company was incorporated, with Haynes as President, to work the patents. It was largely from this source that Haynes became a millionaire in 1920. In April 1912, Haynes's attempt to patent the use of chromium with iron to render the product rustless was unsuccessful. However, he re-applied for a US patent on 12 March 1915 and, although this was initially rejected, he persevered and finally obtained recognition of his modified claim. The American Stainless Steel Company licensed the patents of Brearley and Haynes jointly in the USA until the 1930s.
    [br]
    Principal Honours and Distinctions
    John Scott Medal 1919 (awarded for useful inventions).
    Bibliography
    Haynes was the author of more than twenty published papers and articles, among them: 1907, "Materials for automobiles", Proceedings of the American Society of Mechanical
    Engineers 29:1,597–606; 1910, "Alloys of nickel and cobalt with chromium", Journal of Industrial Engineering
    and Chemistry 2:397–401; 1912–13, "Alloys of cobalt with chromium and other metals", Transactions of the American Institute of 'Mining Engineers 44:249–55;
    1919–20, "Stellite and stainless steel", Proceedings of the Engineering Society of West
    Pennsylvania 35:467–74.
    1 April 1919, US patent no. 1,299,404 (stainless steel).
    The four US patents worked by the Haynes Stellite Company were: 17 December 1907, patent no. 873,745.
    1 April 1913, patent no. 1,057,423.
    1 April 1913, patent no. 1,057, 828.
    17 August 1915, patent no. 1,150, 113.
    Further Reading
    R.D.Gray, 1979, Alloys and Automobiles. The Life of Elwood Haynes, Indianapolis: Indiana Historical Society (a closely documented biography).
    JKA

    Biographical history of technology > Haynes, Elwood

См. также в других словарях:

  • Metallurgy in pre-Columbian America — Further information: Metallurgy in pre Columbian Mesoamerica Sican tumi, or ceremonial knife, Peru, 850–1500 CE Metallury in pre Columbian America is the extraction and purification of metals, as well as creating metal alloys and fabrication with …   Wikipedia

  • History of the Indo-Greek Kingdom — The History of the Indo Greek Kingdom covers a period from the 2nd century BCE to the beginning of the 1st century CE in northern and northwestern India. There were over 30 Indo Greek kings, often in competition on different territories. Many of… …   Wikipedia

  • Technology of the Song Dynasty — The Song Dynasty ( zh. 宋朝; 960–1279 CE) provided some of the most significant technological advances in Chinese history, many of which came from talented statesmen drafted by the government through imperial examinations.The ingenuity of advanced… …   Wikipedia

  • History of the Cyclades — The Cyclades (Greek: Κυκλάδες / Kykládes ) are Greek islands located in the southern part of the Aegean Sea. The archipelago contains some 2,200 islands, islets and rocks; just 33 islands are inhabited. For the ancients, they formed a circle… …   Wikipedia

  • Magic in the Greco-Roman world — The study of magic in the Greco Roman world is a branch of the disciplines of classics, ancient history and religious studies. In the ancient post hellenistic world of the Greeks and Romans (the Greco Roman world), the public and private rituals… …   Wikipedia

  • Archaeology and the Book of Mormon — Part of a series on The Book of Mormon …   Wikipedia

  • Cupellation — is a metallurgical process in which ores or alloyed metals are treated under high temperatures and carefully controlled operations in order to separate noble metals, like gold and silver, from base metals like lead, copper, zinc, arsenic,… …   Wikipedia

  • Brass — For other uses, see Brass (disambiguation). Brass die, along with zinc and copper samples. Brass is an alloy of copper and zinc; the proportions of zinc and copper can be varied to create a range of brasses with varying properties.[1] In …   Wikipedia

  • Native Americans in the United States — This article is about the indigenous people of the United States. For other indigenous people see Indigenous peoples by geographic regions Native Americans …   Wikipedia

  • Culture of the Song Dynasty — A Song Dynasty Chinese inkstone with gold and silver markings, from the Nantoyōsō Collection, Japan The Song Dynasty (960–1279 AD) was a culturally rich and sophisticated age for China. There was blossomi …   Wikipedia

  • History of ferrous metallurgy — Iron (material) redirects here. For the chemical element Fe, see Iron. Bloomery smelting during the Middle Ages. The history of ferrous metallurgy began far back in prehistory. The earliest surviving iron artifacts, from the 5th millennium BC in… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»